时间复杂度

对于同一问题,我们给出两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊(214.583347秒相比于0.182897秒),由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣。

时间复杂度和“大O记法”

我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。

对于算法的时间效率,我们可以用“大O记法”来表示。

“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似

时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)

如何理解“大O记法”

对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n²和100n²属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n²级

时间复杂度的基本运算原则

  1. 基本操作,即只有常数项,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

常见时间复杂度

执行次数函数举例 非正式术语
12 O(1) 常数阶
2n+3 O(n) 线性阶
3n2+2n+1 O(n²) 平方阶
5log2n+20 O(logn) 对数阶
2n+3nlog2n+19 O(nlogn) nlogn阶
6n3+2n2+3n+4 O(n³) 立方阶
2n O(2^n) 指数阶

注意,经常将log2n(以2为底的对数)简写成logn

常见时间复杂度之间的关系

常见时间复杂度之间的关系

所消耗的时间从小到大

O(1) < O(logn) < O(n) < O(nlogn) < O(n²) < O(n³) < O(2^n) < O(n!) < O(n^n)

算法分析

1
2
3
4
5
for a in range(0, 1001):
for b in range(0, 1001):
for c in range(0, 1001):
if a**2 + b**2 == c**2 and a+b+c == 1000:
print("a, b, c: %d, %d, %d" % (a, b, c))

时间复杂度:
T(n) = O(n*n*n) = O(n³)

这个程序的运行出结果要110秒

1
2
3
4
5
for a in range(0, 1001):
for b in range(0, 1001-a):
c = 1000 - a - b
if a**2 + b**2 == c**2:
print("a, b, c: %d, %d, %d" % (a, b, c))

时间复杂度:
T(n) = O(n*n) = O(n²)

在实现了相同功能的情况下,这个程序只需要0.1秒